Learning manifold to regularize nonnegative matrix factorization
نویسندگان
چکیده
In this chapter we discuss how to learn an optimal manifold presentation to regularize nonegative matrix factorization (NMF) for data representation problems. NMF, which tries to represent a nonnegative data matrix as a product of two low rank nonnegative matrices, has been a popular method for data representation due to its ability to explore the latent part-based structure of data. Recent study shows that lots of data distributions have manifold structures, and we should respect the manifold structure when the data are represented. Recently, manifold regularized NMF used a nearest neighbor graph to regulate the learning of factorization parameter matrices and has shown its advantage over traditional NMF methods for data representation problems. However, how to construct an optimal graph to present the manifold properly remains a difficult problem due to the graph model selection, noisy features, and nonlinear distributed data. In this chapter, we introduce three effective methods to solve these problems of graph construction for manifold regularized NMF. Multiple graph learning is proposed to solve the problem of graph model selection, adaptive graph learning via feature selection is proposed to solve the problem of constructing a graph from noisy features, while multi-kernel learning-based graph construction is used to solve the problem of learning a graph from nonlinearly distributed data.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملNonnegative Tensor Factorization for EEG Pattern Classification
Learning fruitful representation from data is one of fundamental problems in machine learning and pattern recognition. Various methods have been developed, including factor analysis, principal component analysis (PCA), independent component analysis (ICA), manifold learning, and so on. Among those, nonnegative matrix factorization (NMF) has recently drawn extensive attention, since promising re...
متن کاملLocal Learning Regularized Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has been widely used in machine learning and data mining. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a local learning regularized nonnegative matrix factorization (LLNMF) for clustering. It imposes an additional constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1410.2191 شماره
صفحات -
تاریخ انتشار 2014